Chloroquine Prevention and Cure of Coronavirus Says Dr. Anthony Fauci in 2005

ChloroquineA search in the NCBI database PubMed for the words coronavirus and chloroquine revealed 26 articles discussing the potential benefits of chloroquine and its derivatives in controlling these viruses infection. There are a number of studies describing the benefits of chloroquine in controlling a variety of viruses replication.

An article published by the Virology Journal dated August 22, 2005, calls into question some of Dr. Fauci’s past statements on Chloroquine (HydroxyChoroquine is a less toxic derivative of Chloroquine). The title is “Chloroquine is a potent inhibitor of SARS coronavirus infection and spread.” 

The Virology Journal is officially published through the National Center for Biotechnology Information (NCBI) and is part of the United States National Library of Medicine, a branch of the National Institutes of Health (NIH). Dr. Anthony Fauci, an immunologist, has served as the director of the National Institute of Allergy and Infectious Diseases (NIAID) since 1984. NIAID is one of 27 institutes that make up the NIH. Dr. Fauci is the lead Medical Expert on the President’s Corona Task Force.

But when Dr. Fauci was first questioned by the press on the treatment possibility, he was clear to use the word anecdotal when describing a lack of evidence of effectiveness. Surely, Dr. Fauci was aware of the research published through NCBI back in 2005? After all, it was done following the SARS outbreak of 2003 in a quest by his organization, NIH, to develop a treatment of vaccine for SARS. Dr, Fauci’s statements made it appear that this was new information related to this outbreak only, and we would be at the beginning of exploring this clinical hypothesis.

“Chloroquine is a potent inhibitor of SARS coronavirus infection and spread”

Abstract

Background

Severe acute respiratory syndrome (SARS) is caused by a newly discovered coronavirus (SARS-CoV). No effective prophylactic or post-exposure therapy is currently available.

Results

We report, however, that chloroquine has strong antiviral effects on SARS-CoV infection of primate cells. These inhibitory effects are observed when the cells are treated with the drug either before or after exposure to the virus, suggesting both prophylactic and therapeutic advantage. In addition to the well-known functions of chloroquine such as elevations of endosomal pH, the drug appears to interfere with terminal glycosylation of the cellular receptor, angiotensin-converting enzyme 2. This may negatively influence the virus-receptor binding and abrogate the infection, with further ramifications by the elevation of vesicular pH, resulting in the inhibition of infection and spread of SARS CoV at clinically admissible concentrations.

Conclusion

Chloroquine is effective in preventing the spread of SARS CoV in cell culture. Favorable inhibition of virus spread was observed when the cells were either treated with chloroquine prior to or after SARS CoV infection. In addition, the indirect immunofluorescence assay described herein represents a simple and rapid method for screening SARS-CoV antiviral compounds.

Background

Severe acute respiratory syndrome (SARS) is an emerging disease that was first reported in Guangdong Province, China, in late 2002. The disease rapidly spread to at least 30 countries within months of its first appearance, and concerted worldwide efforts led to the identification of the etiological agent as SARS coronavirus (SARS-CoV), a novel member of the family Coronaviridae [1]. Complete genome sequencing of SARS-CoV [23] confirmed that this pathogen is not closely related to any of the previously established coronavirus groups. Budding of the SARS-CoV occurs in the Golgi apparatus [4] and results in the incorporation of the envelope spike glycoprotein into the virion. The spike glycoprotein is a type I membrane protein that facilitates viral attachment to the cellular receptor and initiation of infection, and angiotensin-converting enzyme-2 (ACE2) has been identified as a functional cellular receptor of SARS-CoV [5]. We have recently shown that the processing of the spike protein was effected by furin-like convertases and that inhibition of this cleavage by a specific inhibitor abrogated cytopathicity and significantly reduced the virus titer of SARS-CoV [6].

Due to the severity of SARS-CoV infection, the potential for rapid spread of the disease, and the absence of proven effective and safe in vivo inhibitors of the virus, it is important to identify drugs that can effectively be used to treat or prevent potential SARS-CoV infections. Many novel therapeutic approaches have been evaluated in laboratory studies of SARS-CoV: notable among these approaches are those using siRNA [7], passive antibody transfer [8], DNA vaccination [9], vaccinia or parainfluenza virus expressing the spike protein [1011], interferons [1213], and monoclonal antibody to the S1-subunit of the spike glycoprotein that blocks receptor binding [14]. In this report, we describe the identification of chloroquine as an effective pre- and post-infection antiviral agent for SARS-CoV. Chloroquine, a 9-aminoquinoline that was identified in 1934, is a weak base that increases the pH of acidic vesicles. When added extracellularly, the non-protonated portion of chloroquine enters the cell, where it becomes protonated and concentrated in acidic, low-pH organelles, such as endosomes, Golgi vesicles, and lysosomes. Chloroquine can affect virus infection in many ways, and the antiviral effect depends in part on the extent to which the virus utilizes endosomes for entry. Chloroquine has been widely used to treat human diseases, such as malaria, amoebiosis, HIV, and autoimmune diseases, without significant detrimental side effects [15]. Together with data presented here, showing virus inhibition in cell culture by chloroquine doses compatible with patient treatment, these features suggest that further evaluation of chloroquine in animal models of SARS-CoV infection would be warranted as we progress toward finding effective antivirals for prevention or treatment of the disease.

Results

Preinfection chloroquine treatment renders Vero E6 cells refractory to SARS-CoV infection

In order to investigate if chloroquine might prevent SARS-CoV infection, permissive Vero E6 cells [1] were pretreated with various concentrations of chloroquine (0.1–10 μM) for 20–24 h prior to virus infection. Cells were then infected with SARS-CoV, and virus antigens were visualized by indirect immunofluorescence as described in Materials and Methods.

Microscopic examination (Fig. 1A) of the control cells (untreated, infected) revealed extensive SARS-CoV-specific immunostaining of the monolayer. A dose-dependant decrease in virus antigen-positive cells was observed starting at 0.1 μM chloroquine, and concentrations of 10 μM completely abolished SARS-CoV infection.

For quantitative purposes, we counted the number of cells stained positive from three random locations on a slide. The average number of positively stained control cells was scored as 100% and was compared with the number of positive cells observed under various chloroquine concentrations (Fig. 1B). Pretreatment with 0.1, 1, and 10 μM chloroquine reduced infectivity by 28%, 53%, and 100%, respectively.

Reproducible results were obtained from three independent experiments. These data demonstrated that pretreatment of Vero E6 cells with chloroquine rendered these cells refractory to SARS-CoV infection.

Figure 1
figure1

Prophylactic effect of chloroquine. Vero E6 cells pre-treated with chloroquine for 20 hrs. Chloroquine-containing media were removed and the cells were washed with phosphate buffered saline before they were infected with SARS-CoV (0.5 multiplicity of infection) for 1 h. in the absence of chloroquine. Virus was then removed and the cells were maintained in Opti-MEM (Invitrogen) for 16–18 h in the absence of chloroquine. SARS-CoV antigens were stained with virus-specific HMAF, followed by FITC-conjugated secondary antibodies. (A) The concentration of chloroquine used is indicated on the top of each panel. (B) SARS-CoV antigen-positive cells at three random locations were captured by using a digital camera, the number of antigen-positive cells was determined, and the average inhibition was calculated. Percent inhibition was obtained by considering the untreated control as 0% inhibition. The vertical bars represent the range of SEM.

The CDC and Dr. Fauci have told us the COVID-19, which is labeled SARS-CoV-2, is closely genetically related, sharing 70% of its genome. Both Coronavirus’s use the same host cell receptor, which is what viruses use to gain entry to the cell and infect the victim. Testing has been formulated as SARS -CoV-2 as well. Here is Fauci giving testimony to the  House Appropriations Subcommittee in  March 2020 talking, specifically about the SARS vaccine study and how that is the jumping-off point for COVID vaccine research. Is it possible he would not have read the NIH specific research?
Judicial Watch announced that it filed a Freedom of Information Act (FOIA) lawsuit on behalf of the Daily Caller News Foundation against the U.S. Department of Health & Human Services (HHS) for communications and other records of National Institute of Allergies and Infectious Diseases Director Anthony Fauci and Deputy Director H. Clifford Lane with and about the World Health Organization (WHO) concerning the novel coronavirus (Daily Caller News Foundation v. U.S. Department Justice (No. 1:20-cv-01149)).
Source: by Bekah LyonsDr. Fauci at the NIH with Effective Choroquine Study in 2005, Now Forgets in 2020″

References

  1. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota PB, Fields B, DeRisi J, Yang JY, Cox N, Hughes J, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group: A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003, 348: 1953-1966. 10.1056/NEJMoa030781

    CAS Article PubMed Google Scholar

  2. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, Khattra J, Asano JK, Barber SA, Chan SY, Cloutier A, Coughlin SM, Freeman D, Girn N, Griffith OL, Leach SR, Mayo , McDonald H, Montgomery SB, Pandoh PK, Petrescu AS, Robertson AG, Schein JE, Siddiqui A, Smailus DE, Stott JM, Yang GS, Plummer F, Andonov A, Artsob H, Bastien N, Bernard K, Booth TF, Bowness D, Czub M, Drebot M, Fernando L, Flick R, Garbutt M, Gray M, Grolla A, Jones S, Feldmann H, Meyers A, Kabani A, Li Y, Normand S, Stroher U, Tipples GA, Tyler S, Vogrig R, Ward D, Watson B, Brunham RC, Krajden M, Petric M, Skowronski DM, Upton C, Roper RL: The Genome sequence of the SARS-associated coronavirus. Science 2003, 300: 1399-1404. 10.1126/science.1085953

    CAS Article PubMed Google Scholar

  3. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Penaranda S, Bankamp B, Maher K, Chen MH, Tong S, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TC, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen Rasmussen M, Fouchier R, Gunther S, Osterhaus AS, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ: Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300: 1394-1399. 10.1126/science.1085952

    CAS Article PubMed Google Scholar

  4. Ng ML, Tan SH, See EE, Ooi EE, Ling AE: Proliferative growth of SARS coronavirus in Vero E6 cells. J Gen Virol 2003, 84: 3291-3303. 10.1099/vir.0.19505-0

    CAS Article PubMed Google Scholar

  5. Li M, Moore WJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426: 450-454. 10.1038/nature02145

    CAS Article PubMed Google Scholar

  6. Bergeron E, Vincent MJ, Wickham L, Hamelin J, Basak A, Nichol ST, Chrétien M, NG Seidah: Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem Biophys Res Comm 2005, 326: 554-563. 10.1016/j.bbrc.2004.11.063

    CAS Article PubMed Google Scholar

  7. Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, Wang Y, Ning H, Zhang S, Chen W, Babiuk LA, Chang Z: Silencing SARS-CoV spike protein expression in cultured cells by RNA interference. FEBS Lett 2004, 560: 141-146. 10.1016/S0014-5793(04)00087-0

    CAS Article PubMed Google Scholar

  8. Subbarao K, McAuliffe J, Vogel L, Fahle G, Fischer S, Tatti K, Packard M, Shieh WJ, Zaki S, Murphy B: Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 2004, 78: 3572-3577. 10.1128/JVI.78.7.3572-3577.2004

    PubMed Central CAS Article PubMed Google Scholar

  9. Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ: A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004, 428: 561-564. 10.1038/nature02463

    CAS Article PubMed Google Scholar

  10. Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, Subbarao K, Moss B: Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA 2004, 101: 6641-6646. 10.1073/pnas.0401939101

    PubMed Central CAS Article PubMed Google Scholar

  11. Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St. Claire M, Murphy BR, Subbarao K, Collins PL: Mucosal immunization of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 2004, 363: 2122-2127. 10.1016/S0140-6736(04)16501-X

    CAS Article PubMed Google Scholar

  12. Sainz B Jr, Mossel EC, Peters CJ, Garry RF: Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 2004, 329: 11-17. 10.1016/j.virol.2004.08.011

    CAS Article PubMed Google Scholar

  13. Stroher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, Jones SM, Feldmann H: Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- alpha. J Infect Dis 2004, 189: 1164-1167. 10.1086/382597

    Article PubMed Google Scholar

  14. Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico AS, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA: Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 2004, 101: 2536-2541. 10.1073/pnas.0307140101

    PubMed Central CAS Article PubMed Google Scholar

  15. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R: Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis 2003, 3: 722-727. 10.1016/S1473-3099(03)00806-5

    CAS Article PubMed Google Scholar

  16. Ng ML, Tan SH, See EE, Ooi EE, Ling AE: Early events of SARS coronavirus infection in vero cells. J Med Virol 2003, 71: 323-331. 10.1002/jmv.10499

    CAS Article PubMed Google Scholar

  17. Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P: Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA 2004, 101: 4240-4245. 10.1073/pnas.0306446101

    PubMed Central CAS Article PubMed Google Scholar

  18. Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, Subbarao K, Nabel GJ: pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol 2004, 78: 5642-5650. 10.1128/JVI.78.11.5642-5650.2004

    PubMed Central CAS Article PubMed Google Scholar

  19. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000, 275: 33238-33243. 10.1074/jbc.M002615200

    CAS Article PubMed Google Scholar

  20. Song HC, Seo MY, Stadler K, Yoo BJ, Choo QL, Coates SR, Uematsu Y, Harada T, Greer CE, Polo JM, Pileri P, Eickmann M, Rappuoli R, Abrignani S, Houghton M, Han JH: Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J Virol 2004, 78: 10328-10335. 10.1128/JVI.78.19.10328-10335.2004

    PubMed Central CAS Article PubMed Google Scholar

  21. Keyaerts E, Vijgen L, Maes P, Neyts J, Ranst MV: In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004, 323: 264-268. 10.1016/j.bbrc.2004.08.085

    CAS Article PubMed Google Scholar

  22. Thorens B, Vassalli P: Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 1986, 321: 618-620. 10.1038/321618a0

    CAS Article PubMed Google Scholar

  23. Dille BJ, Johnson TC: Inhibition of vesicular stomatitis virus glycoprotein expression by chloroquine. J Gen Virol 1982, 62: 91-103.

    CAS Article PubMed Google Scholar

  24. Tsai WP, Nara PL, Kung HF, Oroszlan S: Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 1990, 6: 481-489.

    CAS Article PubMed Google Scholar

  25. Savarino A, Lucia MB, Rastrelli E, Rutella S, Golotta C, Morra E, Tamburrini E, Perno CF, Boelaert JR, Sperber K, Cauda RC: Anti-HIV effects of chloroquine: inhibition of viral particle glycosylation and synergism with protease inhibitors. J Acquir Immune Defic Syndr 2004, 35: 223-232.

    CAS Article PubMed Google Scholar

  26. Ducharme J, Farinotti R: Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 1996, 31: 257-CAS Article PubMed Google Scholar 

FAIR USE NOTICE: This article may contain copyrighted material. Such material is made available for educational purposes only. This constitutes a ‘fair use’ of any such copyrighted material as provided for in Title 17 U.S.C. section 106A-117 of the U.S. Copyright Law.

Write A Comment